Visualization and characterization of interfacial polymerization layer formation.

نویسندگان

  • Yali Zhang
  • Nieck E Benes
  • Rob G H Lammertink
چکیده

We present a microfluidic platform to visualize the formation of free-standing films by interfacial polymerization. A microfluidic device is fabricated, with an array of micropillars to stabilize an aqueous-organic interface that allows a direct observation of the films formation process via optical microscopy. Three different amines are selected to react with trimesoyl chloride: piperazine, JEFFAMINE(®)D-230, and an ammonium functionalized polyhedral oligomeric silsesquioxane. Tracking the formation of the free-standing films in time reveals strong effects of the characteristics of the amine precursor on the morphological evolution of the films. Piperazine exhibits a rapid reaction with trimesoyl chloride, forming a film up to 20 μm thick within half a minute. JEFFAMINE(®)D-230 displays much slower film formation kinetics. The location of the polymerization reaction was initially in the aqueous phase and then shifted into the organic phase. Our in situ real-time observations provide information on the kinetics and the changing location of the polymerization. This provides insights with important implications for fine-tuning of interfacial polymerizations for various applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thin Film Heterogeneous Ion Exchange Membranes Prepared by Interfacial Polymerization of PAA-co-Iron-Nickel Oxide Nanoparticles on Polyvinylchloride Based Substrate

In this research thin film heterogeneous cation exchange membrane was prepared by interfacial polymerization of polyacrylic acid-co-iron nickel oxide nanoparticle son PVC based substrate. Spectra analysis confirmed graft polymerization conclusively. The SEM images showed that polymerized layer covers the membranes by simple gel network entanglement. Results exhibited that membrane water content...

متن کامل

Performance and Structure of Thin Film Composite Reverse Osmosis Membranes Prepared by Interfacial Polymerization in the Presence of Acid Acceptor

During interfacial polymerization (IP) reaction between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC), a by-product, i.e. hydrochloric acid can produce. This produced acid diffuses back in aqueous phase and protonates MPDA and reduces its reactivity that results in lowering of polymer yield and performance of membrane. Further, for getting consistency in reverse...

متن کامل

Polyamide Forward Osmosis Membrane: Synthesis, Characterization and Its Performance for Humic Acid Removal

In this research, modification on the ultrafiltration (UF) membrane by synthesis of a thin layer of polyamide selective layer was designed for high performances of forward osmosis (FO) water treatment. Two monomers, m-Phenylenediamine (MPD) and Trimesoyl chloride (TMC) with different concentrations of MPD (2.0% w/v and 1.0% w/v) were reacted with TMC (0.15% w/v) for interfacial polymerization (...

متن کامل

Preparation of Novel Thin-Film Composite Nanofiltration Membranes for Separation of Amoxicillin

Several novel composite membranes were prepared to separate and recycle amoxicillin from pharmaceutical wastewater via nanofiltration process. The synthesis of these membranes included three stages: 1- preparation of polysulfone ultrafiltration membranes as a support via phase separation process, 2- modification of its surface by interfacial polymerization as a selective layer (polyamide), and ...

متن کامل

Investigation and characterization of TiO2-TFC nanocomposite membranes; membrane preparation and UV studies

The purpose of this study was to compare the presence or absence of UV irradiation on the separation performance and morphology of the TiO2-assembled thin film membranes (in different concentrations). Furthermore, an attempt was made to show and compare the effect of the presence of TiO2 nanoparticles in aqueous and organic phases during the interfacial polymerization proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2015